Precalculus微积分探索之End behavior of Polynomials

极限是我们学习微积分的重要基础,今天带大家学习一个简单的概念 — End behavior of polynomials。

首先,来学习一下词汇:

polynomial 多项式

the degree of polynomial多项式的次数

function函数

linear function 一次函数:is of the first degree

quadratic function 二次函数:has degree 2

cubic function 三次函数:has degree 3

constant 常数

coefficient 系数

infinite 无穷

even 偶数

odd 奇数

什么是polynomial function?

A polynomial function of degree n can be written in the form:

Precalculus: 微积分探索之End behavior of Polynomials,Precalculus: 微积分探索之End behavior of Polynomials

那么,什么是End behavior呢?我们可以理解为“终端趋势”,End behavior of polynomials即当x趋向于正/负无穷时(positively or negatively infinite),多项式(polynomial)所趋向的值。

先说结论:

Every polynomial whose degree is greater than or equal to 1 becomes infinite (positively or negatively) as x does, depending on the sign of the leading coefficient and the degree of the polynomial.

接下来我们结合图像来理解:

1.Quadratic function 二次函数

Precalculus: 微积分探索之End behavior of Polynomials

由图像可知,当a(leading coefficient)大于0时,

x → +∞,y → +∞

x → -∞,y → +∞

当a(leading coefficient)小于0时,

x → +∞,y → -∞

x → -∞,y → -∞

2.Cubic function 三次函数

Precalculus: 微积分探索之End behavior of Polynomials

当a(leading coefficient)大于0时,

x → +∞,y → +∞

x → -∞,y → -∞

当a(leading coefficient)小于0时,

x → +∞,y → -∞

x → -∞,y → +∞

3.Quartic function四次函数

Precalculus: 微积分探索之End behavior of Polynomials

当a(leading coefficient)大于0时,

x → +∞,y → +∞

x → -∞,y → +∞

当a(leading coefficient)小于0时,

x → +∞,y → -∞

x → -∞,y → -∞

以上我们不难看出(大家感兴趣可以画一下五次函数的图像),多项式次数(the degree of polynomial) 的奇偶性和首项系数(leading coefficient)的正负决定了函数图像的终端趋势,我们可以归类为:

1.If the degree n of a polynomial is even(偶),the arms of the graph(图像的两端)are either both up(a > 0)or down(a < 0);

2.If the degree n of a polynomial is odd(奇),one arm of the graph is up and the other is down:

when a > 0,the right arm of the graph is up

when a < 0,the right arm of the graph is down

【竞赛报名/项目咨询+微信:mollywei007】

上一篇

最好的阅读与写作夏校:伟大的书夏校开始报名!

下一篇

雅思和托福到底啥区别?

你也可能喜欢

  • 暂无相关文章!

评论已经被关闭。

插入图片
返回顶部