1.求所有的函数f:R→R,使得等式:f ([x]y)=f (x) [f (y)]
对所有x , y=R成立.(这里, [z]表示不超过实数 z 的最大整数.)
2. 设三角形 ABC 的内心是 I,外接圆为.直线 AI 交圆F于另一点 .设E 是弧DBC上的一点,F 是边 BC 上的一点,使得
设 G 是线段 IF 的中点.证明:直线 DG 与 EI 的交点在圆上.
3.设N是所有正整数构成的集合.求所有的函数 g : N → N,使得对所有 m, n∈N,
(g(m) + n)(m+g(n))
是一个完全平方数.
4.设P 是三角形ABC 内部的一点, 直线AP,BP,CP 与三角形ABC 的外接圆的另一个交 点分别为 K,L ,M.圆在点 C 处的切线与直线AB 相交于点 S.假设 SC = SP,证明: MK = ML.
5.有6 个盒子B1 , B2 , B3 , B4 , B5 , B6 ,开始时每个盒子中都恰好有一枚硬币.每次可以任意选择 如下两种方式之一对它们进行操作:
方式 1:选取一个至少有一枚硬币的盒子Bj(1≤j ≤ 5) ,从盒子Bj 中取走一枚硬币,并在盒子Bj+1 中加入 2 枚硬币.
方式 2:选取一个至少有一枚硬币的盒子 Bk(1≤k ≤4) ,从盒子 Bk中取走一枚硬币,并且交换 盒子Bk+1 (可能是空盒)与盒子Bk+2 (可能是空盒)中的所有硬币.
问: 是否可以进行若干次上述操作,使得盒子B1 , B2 , B3 , B4 , B5 中没有硬币,而盒子B6 中恰好有
6.设a1, a2 , a3 , ……是一个正实数数列.假设存在某个固定的正整数 s,使得对所有的 n>s ,有
证明: 存在正整数l 和 N,l≤s ,使得对所有的 n≥N 都有an=al=an-1 .